文章目录
  1. 1. 分库分表之后,id主键如何处理?
  2. 2. 读写分离、主从复制
    1. 2.1. 为什么MySQL要读写分离?
    2. 2.2. 如何实现MySQL的读写分离?
    3. 2.3. MySQL主从复制原理的是什么?
    4. 2.4. MySQL主从同步延时问题?

接上文

分库分表之后,id主键如何处理?

这是分库分表之后你必然要面对的一个问题,就是id咋生成?因为要是分成多个表之后,每个表都是从1开始累加,那肯定不对啊,需要一个全局唯一的id来支持。

1)数据库自增id

你的系统里每次得到一个id,都是往一个库的一个表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个id。拿到这个id之后再往对应的分库分表里去写入。

这个方案的好处就是方便简单,谁都会用;缺点就是单库生成自增id,要是高并发的话,就会有瓶颈的;如果你硬是要改进一下,那么就专门开一个服务出来,这个服务每次就拿到当前id最大值,然后自己递增几个id,一次性返回一批id,然后再把当前最大id值修改成递增几个id之后的一个值;但是无论怎么说都是基于单个数据库。

适合的场景:你分库分表就俩原因,要不就是单库并发太高,要不就是单库数据量太大;除非是你并发不高,但是数据量太大导致的分库分表扩容,你可以用这个方案,因为可能每秒最高并发最多就几百,那么就走单独的一个库和表生成自增主键即可。就是说并发很低,几百/s,但是数据量大,几十亿的数据,所以需要靠分库分表来存放海量的数据。

2)uuid

好处就是本地生成,不要基于数据库来了;不好之处就是,uuid太长了,作为主键性能太差了,不适合用于主键。

适合的场景:如果你是要随机生成个什么文件名了,编号之类的,你可以用uuid,但是作为主键是不能用uuid的。

3)获取系统当前时间

这个就是获取当前时间即可,但是问题是,并发很高的时候,比如一秒并发几千,会有重复的情况,这个是肯定不合适的。基本就不用考虑了。

适合的场景:一般如果用这个方案,是将当前时间跟很多其他的业务字段拼接起来,作为一个id,如果业务上你觉得可以接受,那么也是可以的。你可以将别的业务字段值跟当前时间拼接起来,组成一个全局唯一的编号,订单编号,时间戳 + 用户id + 业务含义编码

4)snowflake算法

twitter开源的分布式id生成算法,就是把一个64位的long型的id,1个bit是不用的,用其中的41 bit作为毫秒数,用10 bit作为工作机器id,12 bit作为序列号

1 bit:不用,为啥呢?因为二进制里第一个bit为如果是1,那么都是负数,但是我们生成的id都是正数,所以第一个bit统一都是0

41 bit:表示的是时间戳,单位是毫秒。41 bit可以表示的数字多达2^41 - 1,也就是可以标识2 ^ 41 - 1个毫秒值,换算成年就是表示69年的时间。

10 bit:记录工作机器id,代表的是这个服务最多可以部署在2^10台机器上哪,也就是1024台机器。但是10 bit里5个bit代表机房id,5个bit代表机器id。意思就是最多代表2 ^ 5个机房(32个机房),每个机房里可以代表2 ^ 5个机器(32台机器)。

12 bit:这个是用来记录同一个毫秒内产生的不同id,12 bit可以代表的最大正整数是2 ^ 12 - 1 = 4096,也就是说可以用这个12bit代表的数字来区分同一个毫秒内的4096个不同的id

实例:

64位的long型的id,64位的long -> 二进制

0 | 0001100 10100010 10111110 10001001 01011100 00 | 10001 | 1 1001 | 0000 00000000

2018-01-01 10:00:00 -> 做了一些计算,再换算成一个二进制,41bit来放 -> 0001100 10100010 10111110 10001001 01011100 00

机房id,17 -> 换算成一个二进制 -> 10001

机器id,25 -> 换算成一个二进制 -> 11001

snowflake算法服务,会判断一下,当前这个请求是否是,机房17的机器25,在2175/11/7 12:12:14时间点发送过来的第一个请求,如果是第一个请求就是00000.

假设,在2175/11/7 12:12:14时间里,机房17的机器25,发送了第二条消息,snowflake算法服务,会发现说机房17的机器25,在2175/11/7 12:12:14时间里,在这一毫秒,之前已经生成过一个id了,此时如果你同一个机房,同一个机器,在同一个毫秒内,再次要求生成一个id,此时我只能把加1,变成这样:

0 | 0001100 10100010 10111110 10001001 01011100 00 | 10001 | 1 1001 | 0000 00000001

实现源码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
public class IdWorker{

private long workerId;
private long datacenterId;
private long sequence;

public IdWorker(long workerId, long datacenterId, long sequence){
// sanity check for workerId
// 这儿不就检查了一下,要求就是你传递进来的机房id和机器id不能超过32,不能小于0
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
}
System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);

this.workerId = workerId;
this.datacenterId = datacenterId;
this.sequence = sequence;
}

private long twepoch = 1288834974657L;

private long workerIdBits = 5L;
private long datacenterIdBits = 5L;
private long maxWorkerId = -1L ^ (-1L << workerIdBits); // 这个是二进制运算,就是5 bit最多只能有31个数字,也就是说机器id最多只能是32以内
private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); // 这个是一个意思,就是5 bit最多只能有31个数字,机房id最多只能是32以内
private long sequenceBits = 12L;

private long workerIdShift = sequenceBits;
private long datacenterIdShift = sequenceBits + workerIdBits;
private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
private long sequenceMask = -1L ^ (-1L << sequenceBits);

private long lastTimestamp = -1L;

public long getWorkerId(){
return workerId;
}

public long getDatacenterId(){
return datacenterId;
}

public long getTimestamp(){
return System.currentTimeMillis();
}

public synchronized long nextId() {
// 这儿就是获取当前时间戳,单位是毫秒
long timestamp = timeGen();

if (timestamp < lastTimestamp) {
System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",
lastTimestamp - timestamp));
}

// 0
// 在同一个毫秒内,又发送了一个请求生成一个id,0 -> 1

if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask; // 这个意思是说一个毫秒内最多只能有4096个数字,无论你传递多少进来,这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围
if (sequence == 0) {
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0;
}

// 这儿记录一下最近一次生成id的时间戳,单位是毫秒
lastTimestamp = timestamp;

// 这儿就是将时间戳左移,放到41 bit那儿;将机房id左移放到5 bit那儿;将机器id左移放到5 bit那儿;将序号放最后10 bit;最后拼接起来成一个64 bit的二进制数字,转换成10进制就是个long型
return ((timestamp - twepoch) << timestampLeftShift) |
(datacenterId << datacenterIdShift) |
(workerId << workerIdShift) |
sequence;
}

0 | 0001100 10100010 10111110 10001001 01011100 00 | 10001 | 1 1001 | 0000 00000000


private long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}

private long timeGen(){
return System.currentTimeMillis();
}

//---------------测试---------------
public static void main(String[] args) {
IdWorker worker = new IdWorker(1,1,1);
for (int i = 0; i < 30; i++) {
System.out.println(worker.nextId());
}
}

}

怎么说呢,大概这个意思吧,就是说41 bit,就是当前毫秒单位的一个时间戳,就这意思;然后5 bit是你传递进来的一个机房id(但是最大只能是32以内),5 bit是你传递进来的机器id(但是最大只能是32以内),剩下的那个10 bit序列号,就是如果跟你上次生成id的时间还在一个毫秒内,那么会把顺序给你累加,最多在4096个序号以内。

所以你自己利用这个工具类,自己搞一个服务,然后对每个机房的每个机器都初始化这么一个东西,刚开始这个机房的这个机器的序号就是0。然后每次接收到一个请求,说这个机房的这个机器要生成一个id,你就找到对应的Worker,生成。

他这个算法生成的时候,会把当前毫秒放到41 bit中,然后5 bit是机房id,5 bit是机器id,接着就是判断上一次生成id的时间如果跟这次不一样,序号就自动从0开始;要是上次的时间跟现在还是在一个毫秒内,他就把seq累加1,就是自动生成一个毫秒的不同的序号。

这个算法那,可以确保说每个机房每个机器每一毫秒,最多生成4096个不重复的id。

利用这个snowflake算法,你可以开发自己公司的服务,甚至对于机房id和机器id,反正给你预留了5 bit + 5 bit,你换成别的有业务含义的东西也可以的。

这个snowflake算法相对来说还是比较靠谱的,所以你要真是搞分布式id生成,如果是高并发啥的,那么用这个应该性能比较好,一般每秒几万并发的场景,也足够你用了。

读写分离、主从复制

为什么MySQL要读写分离?

如何实现MySQL的读写分离?

基于主从复制架构,简单来说,就搞一个主库,挂多个从库,然后我们就单单只是写主库,然后主库会自动把数据给同步到从库上去。

MySQL主从复制原理的是什么?

主库将变更写binlog日志,然后从库连接到主库之后,从库有一个IO线程,将主库的binlog日志拷贝到自己本地,写入一个中继日志中。接着从库中有一个SQL线程会从中继日志读取binlog,然后执行binlog日志中的内容,也就是在自己本地再次执行一遍SQL,这样就可以保证自己跟主库的数据是一样的。

这里有一个非常重要的一点,就是从库同步主库数据的过程是串行化的,也就是说主库上并行的操作,在从库上会串行执行。所以这就是一个非常重要的点了,由于从库从主库拷贝日志以及串行执行SQL的特点,在高并发场景下,从库的数据一定会比主库慢一些,是有延时的。所以经常出现,刚写入主库的数据可能是读不到的,要过几十毫秒,甚至几百毫秒才能读取到。

而且这里还有另外一个问题,就是如果主库突然宕机,然后恰好数据还没同步到从库,那么有些数据可能在从库上是没有的,有些数据可能就丢失了。

所以mysql实际上在这一块有两个机制,一个是半同步复制,用来解决主库数据丢失问题;一个是并行复制,用来解决主从同步延时问题。

这个所谓半同步复制,semi-sync复制,指的就是主库写入binlog日志之后,就会将强制此时立即将数据同步到从库,从库将日志写入自己本地的relay log之后,接着会返回一个ack给主库,主库接收到至少一个从库的ack之后才会认为写操作完成了。

所谓并行复制,指的是从库开启多个线程,并行读取relay log中不同库的日志,然后并行重放不同库的日志,这是库级别的并行。

MySQL主从同步延时问题?

比如说用了mysql主从架构之后,可能会发现,刚写入库的数据结果没查到,结果就完蛋了。

所以你要考虑好应该在什么场景下来用这个MySQL主从同步,建议是一般在读远远多于写,而且读的时候一般对数据时效性要求没那么高的时候,用MySQL主从同步。

为了解决这个问题,我们可以考虑使用MySQL的并行复制,但是问题是那是库级别的并行,所以有时候作用不是很大。因此对于那种写了之后立马就要保证可以查到的场景,采用强制读主库的方式,这样就可以保证你肯定的可以读到数据了。

一般来说,如果主从延迟较为严重

1、分库,将一个主库拆分为4个主库,每个主库的写并发就500/s,此时主从延迟可以忽略不计

2、打开mysql支持的并行复制,多个库并行复制,如果说某个库的写入并发就是特别高,单库写并发达到了2000/s,并行复制还是没意义。但根据28法则,很多时候,就是少数的几个订单表,写入了2000/s,其他几十个表10/s。

3、重写代码,写代码的同学,要慎重,插入数据之后,直接就更新,不要查询。

4、如果确实是存在必须先插入,立马要求就查询到,然后立马就要反过来执行一些操作,对这个查询设置直连主库。不推荐这种方法,你这么搞导致读写分离的意义就丧失了。


如果觉得文章很有趣或对你带来了帮助,欢迎请我喝杯咖啡哦~

文章目录
  1. 1. 分库分表之后,id主键如何处理?
  2. 2. 读写分离、主从复制
    1. 2.1. 为什么MySQL要读写分离?
    2. 2.2. 如何实现MySQL的读写分离?
    3. 2.3. MySQL主从复制原理的是什么?
    4. 2.4. MySQL主从同步延时问题?